First Chapter

同角三角函数的基本关系式

倒数关系

商的关系

平方关系

tanαcotα=1\displaystyle{tan\alpha cot\alpha = 1}

sinαcosα=tanα=secαcscα\displaystyle{\frac{sin\alpha}{cos\alpha} = tan\alpha = \frac{sec\alpha}{csc\alpha}}

sin2α+cos2α=1\displaystyle{sin^2\alpha + cos^2\alpha = 1}

sinαcscα=1\displaystyle{sin\alpha csc\alpha = 1}

cosαsinα=cotα=cscαsecα\displaystyle{\frac{cos\alpha}{sin\alpha} = cot\alpha = \frac{csc\alpha}{sec\alpha}}

1+tan2α=sec2α\displaystyle{1 + tan^2\alpha = sec^2\alpha}

cosαsecα=1\displaystyle{cos\alpha sec\alpha = 1}

1+cot2α=csc2α\displaystyle{1 + cot^2\alpha = csc^2\alpha}

和角公式

万能公式

sin(α±β)=sinαcosβ±cosαsinβ\displaystyle{sin(\alpha \pm \beta) = sin\alpha cos\beta \pm cos\alpha sin\beta}

sin2α=2tanα1+tan2α\displaystyle{sin2\alpha = \frac{2tan\alpha}{1+tan^2 \alpha}}

cos(α±β)=cosαcosβsinαsinβ\displaystyle{cos(\alpha \pm \beta) = cos\alpha cos\beta \mp sin\alpha sin\beta}

cos2α=1tan2α1+tan2α\displaystyle{cos2\alpha = \frac{1-tan^2\alpha}{1+tan^2 \alpha}}

tan(α±β)=tanα±tanβ1tanαtanβ\displaystyle{tan(\alpha \pm \beta) = \frac{tan\alpha \pm tan\beta}{1\mp tan\alpha tan\beta}}

tan2α=2tanα1tan2α\displaystyle{tan2\alpha = \frac{2tan\alpha}{1-tan^2 \alpha}}

半角的正弦、余弦和正切公式

三角函数的降幂公式

sinα2=±1cosα2\displaystyle{sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-cos\alpha}{2}}}

sin2α=1cos2α2\displaystyle{sin^2\alpha = \frac{1-cos2\alpha}{2}}

cosα2=±1+cosα2\displaystyle{cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+cos\alpha}{2}}}

cos2α=1+cos2α2\displaystyle{cos^2\alpha = \frac{1+cos2\alpha}{2}}

tanα2=±1cosα1+cosα=1cosαsinα=sinα1+cosα\displaystyle{tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-cos\alpha}{1+cos\alpha}} = \frac{1-cos\alpha}{sin\alpha} = \frac{sin\alpha}{1+cos\alpha}}

sin2α=2sinαcosα\displaystyle{sin2\alpha = 2sin\alpha cos\alpha}

二倍角的正弦、余弦和正切公式

三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα\displaystyle{sin2\alpha = 2sin\alpha cos\alpha}

sin3α=4sin3α+3sinα\displaystyle{sin3\alpha = - 4sin^3\alpha + 3sin\alpha}

cos2α=cos2αsin2α=2cos2α1=12sin2α\displaystyle{cos2\alpha = cos^2\alpha - sin^2\alpha = 2cos^2\alpha -1 = 1-2sin^2\alpha}

cos3α=4cos3α3sinα\displaystyle{cos3\alpha = 4cos^3\alpha - 3sin\alpha}

tan2α=2tanα1tan2α\displaystyle{tan2\alpha = - \frac{2tan\alpha}{1-tan^2\alpha}}

tan3α=3tanαtan3α13tan2α\displaystyle{tan3\alpha = - \frac{3tan\alpha - tan3\alpha}{1-3tan2\alpha}}

三角函数的和差化积公式

三角函数的积化和差公式

sinα+sinβ=2sinα+β2cosαβ2\displaystyle{sin\alpha + sin\beta = 2sin\frac{\alpha + \beta}{2}cos\frac{\alpha - \beta}{2}}

sinαcosβ=12[sin(α+β)+sin(αβ)]\displaystyle{sin\alpha cos \beta} = \frac{1}{2}[sin(\alpha + \beta) + sin(\alpha - \beta)]

sinαsinβ=2cosα+β2sinαβ2\displaystyle{sin\alpha - sin\beta = 2cos\frac{\alpha + \beta}{2}sin\frac{\alpha - \beta}{2}}

cosαsinβ=12[sin(α+β)sin(αβ)]\displaystyle{cos\alpha sin \beta} = \frac{1}{2}[sin(\alpha + \beta) - sin(\alpha - \beta)]

cosα+cosβ=2cosα+β2cosαβ2\displaystyle{cos\alpha + cos\beta = 2cos\frac{\alpha + \beta}{2}cos\frac{\alpha - \beta}{2}}

cosαcosβ=12[cos(α+β)+cos(αβ)]\displaystyle{cos\alpha cos \beta} = \frac{1}{2}[cos(\alpha + \beta) + cos(\alpha - \beta)]

cosαcosβ=2sinα+β2sinαβ2\displaystyle{cos\alpha - cos\beta = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha - \beta}{2}}

sinαsinβ=12[cos(α+β)cos(αβ)]\displaystyle{sin\alpha sin \beta} = -\frac{1}{2}[cos(\alpha + \beta) - cos(\alpha - \beta)]

辅助角公式

asinx±bcosx=a2+b2sin(x±ϕ)asinx \pm bcosx = \sqrt{a^2 + b^2}sin(x\pm \phi)

Last updated

Was this helpful?